Acyclic Edge Colorings of Planar Graphs Without Short Cycles∗

نویسندگان

  • Xiang-Yong Sun
  • Jian-Liang Wu
چکیده

A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most ∆(G)+2 if G contains no i-cycles, 4≤ i≤ 8, or any two 3-cycles are not incident with a common vertex and G contains no i-cycles, i = 4 and 5.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acyclic edge colouring of planar graphs without short cycles

A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most ∆(G)+2 if G contains no i-cycles, 4≤ i≤ 8, or any two 3-cycles are not incident with a common vertex and ...

متن کامل

List Edge and List Total Colorings of Planar Graphs without 6-cycles with Chord

Giving a planar graph G, let χl(G) and χ ′′ l (G) denote the list edge chromatic number and list total chromatic number of G respectively. It is proved that if a planar graph G without 6-cycles with chord, then χl(G) ≤ ∆(G) + 1 and χ ′′ l (G) ≤ ∆(G) + 2 where ∆(G) ≥ 6.

متن کامل

Acyclic 3-Colorings and 4-Colorings of Planar Graph Subdivisions

An acyclic coloring of a graph G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the same color and every cycle in G has vertices of at least three different colors. An acyclic k-coloring of G is an acyclic coloring of G with at most k colors. It is NP-complete to decide whether a planar graph G with maximum degree four admits an acyclic 3-coloring [1]...

متن کامل

Acyclic colorings of locally planar graphs

It will be shown that locally planar graphs are acyclically 8-colorable. In this result, a new notion of local planarity based on homology instead of the homotopy is used. This gives weaker requirement than the usual large edge-width condition.

متن کامل

About acyclic edge colourings of planar graphs

Let G = (V,E) be any finite simple graph. A mapping C : E → [k] is called an acyclic edge k-colouring of G, if any two adjacent edges have different colours and there are no bichromatic cycles in G. In other words, for every pair of distinct colours i and j, the subgraph induced by all the edges which have either colour i or j is acyclic. The smallest number k of colours, such that G has an acy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008